Names of 3 dimensional space groups
Names of 3-dimensional space groups¶
Web resources:
- “A Hypertext Book of Crystallographic Space Group Diagrams and Tables” Birkbeck College, University of London http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
- NRL Crystal Lattice Structures 2
- Three-Dimensional Space Groups from Steven Dutch, Natural and Applied Sciences, University of Wisconsin - Green Bay https://stevedutch.net/symmetry/3dspacegrps/3dspgrp.htm
- REPRES, Space Group Irreducible Representations http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-repres
For many of the space groups there are multiple choices of symmetry
transformations. They are denoted as settings for each of the groups. By
default, the code will use the first setting. By defining setting <integer setting>
on the symmetry input line (see Symmetry Group Input paragraph),
you can tell the code to choose a different setting/symmetry
transformation.
Triclinic space groups (group numbers: 1-2)¶
Monoclinic space groups (group numbers: 3-15)¶
P2
P2_1
C2
Pm
Pc
Cm
Cc
P2/m
P2_1/m
C2/m
P2/c
P2_1/c
C2/c
Orthorhombic space groups (group numbers: 16-74)¶
P222
P222_1
P2_12_12
P2_12_12_1
C222_1
C222
F222
I222
I2_12_12_1
Pmm2
Pmc2_1
Pcc2
Pma2
Pca2_1
Pnc2
Pmn2_1
Pba2
Pna2_1
Pnn2
Cmm2
Cmc2_1
Ccc2
Amm2
Abm2
Ama2
Aba2
Fmm2
Fdd2
Imm2
Iba2
Ima2
Pmmm
Pnnn
Pccm
Pban
Pmma
Pnna
Pmna
Pcca
Pbam
Pccn
Pbcm
Pnnm
Pmmn
Pbcn
Pbca
Pnma
Cmcm
Cmca
Cmmm
Cccm
Cmma
Ccca
Fmmm
Fddd
Immm
Ibam
Ibca
Imma
Tetragonal space groups (group numbers: 75-142)¶
P4
P4_1
P4_2
P4_3
I4
I4_1
P-4
I-4
P4/m
P4_2/m
P4/n
P4_2/n
I4/m
I4_1/a
P422
P42_12
P4_122
P4_12_12
P4_222
P4_22_12
P4_322
P4_32_12
I422
I4_122
P4mm
P4bm
P4_2cm
P4_2nm
P4cc
P4nc
P4_2mc
P4_2bc
I4mm
I4cm
I4_1md
I4_1cd
P-42m
P-42c
P-42_1m
P-42_1c
P-4m2
P-4c2
P-4b2
P-4n2
I-4m2
I-4c2
I-42m
I-42d
P4/mmm
P4/mcc
P4/nbm
P4/nnc
P4/mbm
P4/mnc
P4/nmm
P4/ncc
P4_2/mmc
P4_2/mcm
P4_2/nbc
P4_2/nnm
P4_2/mbc
P4_2/mnm
P4_2/nmc
P4_2/ncm
I4/mmm
I4/mcm
I4_1/amd
I4_1/acd
Trigonal space groups (group numbers: 143-167)¶
P3
P3_1
P3_2
R3
P-3
R-3
P312
P321
P3_112
P3_121
P3_212
P3_221
R32
P3m1
P31m
P3c1
P31c
R3m
R3c
P-31m
P-31c
P-3m1
P-3c1
R-3m
R-3c
Hexagonal space groups (group numbers: 168-194)¶
P6
P6_1
P6_5
P6_2
P6_4
P6_3
P-6
P6/m
P6_3/m
P622
P6_122
P6_522
P6_222
P6_422
P6_322
P6mm
P6cc
P6_3cm
P6_3mc
P-6m2
P-6c2
P-62m
P-62c
P6/mmm
P6/mcc
P6_3/mcm
P6_3/mmc
Cubic space groups (group numbers: 195-230)¶
P23
F23
I23
P2_13
I2_13
Pm-3
Pn-3
Fm-3
Fd-3
Im-3
Pa-3
Ia-3
P432
P4_232
F432
F4_132
I432
P4_332
P4_132
I4_132
P-43m
F-43m
I-43m
P-43n
F-43c
I-43d
Pm-3m
Pn-3n
Pm-3n
Pn-3m
Fm-3m
Fm-3c
Fd-3m
Fd-3c
Im-3m
Ia-3d