Skip to content

Names of 3 dimensional space groups

Names of 3-dimensional space groups

Web resources:

  • NRL Crystal Lattice Structures 2

For many of the space groups there are multiple choices of symmetry transformations. They are denoted as settings for each of the groups. By default, the code will use the first setting. By defining setting <integer setting> on the symmetry input line (see Symmetry Group Input paragraph), you can tell the code to choose a different setting/symmetry transformation.

Triclinic space groups (group numbers: 1-2)

P1P-1

Monoclinic space groups (group numbers: 3-15)

P2P2_1C2
PmPcCmCcP2/m
P2_1/mC2/mP2/cP2_1/cC2/c

Orthorhombic space groups (group numbers: 16-74)

P222P222_1P2_12_12P2_12_12_1C222_1
C222F222I222I2_12_12_1Pmm2
Pmc2_1Pcc2Pma2Pca2_1Pnc2
Pmn2_1Pba2Pna2_1Pnn2Cmm2
Cmc2_1Ccc2Amm2Abm2Ama2
Aba2Fmm2Fdd2Imm2Iba2
Ima2PmmmPnnnPccmPban
PmmaPnnaPmnaPccaPbam
PccnPbcmPnnmPmmnPbcn
PbcaPnmaCmcmCmcaCmmm
CccmCmmaCccaFmmmFddd
ImmmIbamIbcaImma

Tetragonal space groups (group numbers: 75-142)

P4
P4_1P4_2P4_3I4I4_1
P-4I-4P4/mP4_2/mP4/n
P4_2/nI4/mI4_1/aP422P42_12
P4_122P4_12_12P4_222P4_22_12P4_322
P4_32_12I422I4_122P4mmP4bm
P4_2cmP4_2nmP4ccP4ncP4_2mc
P4_2bcI4mmI4cmI4_1mdI4_1cd
P-42mP-42cP-42_1mP-42_1cP-4m2
P-4c2P-4b2P-4n2I-4m2I-4c2
I-42mI-42dP4/mmmP4/mccP4/nbm
P4/nncP4/mbmP4/mncP4/nmmP4/ncc
P4_2/mmcP4_2/mcmP4_2/nbcP4_2/nnmP4_2/mbc
P4_2/mnmP4_2/nmcP4_2/ncmI4/mmmI4/mcm
I4_1/amdI4_1/acd

Trigonal space groups (group numbers: 143-167)

P3P3_1P3_2
R3P-3R-3P312P321
P3_112P3_121P3_212P3_221R32
P3m1P31mP3c1P31cR3m
R3cP-31mP-31cP-3m1P-3c1
R-3mR-3c

Hexagonal space groups (group numbers: 168-194)

P6P6_1P6_5
P6_2P6_4P6_3P-6P6/m
P6_3/mP622P6_122P6_522P6_222
P6_422P6_322P6mmP6ccP6_3cm
P6_3mcP-6m2P-6c2P-62mP-62c
P6/mmmP6/mccP6_3/mcmP6_3/mmc

Cubic space groups (group numbers: 195-230)

P23
F23I23P2_13I2_13Pm-3
Pn-3Fm-3Fd-3Im-3Pa-3
Ia-3P432P4_232F432F4_132
I432P4_332P4_132I4_132P-43m
F-43mI-43mP-43nF-43cI-43d
Pm-3mPn-3nPm-3nPn-3mFm-3m
Fm-3cFd-3mFd-3cIm-3mIa-3d