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1 Brief Introduction

Formally, the Helmholtz free energy, F , of the canonical (NVT) ensemble is defined as

F = −kBT log Z (1)

where the partition function, Z, is given by

Z =
1

N !h3N

∫
dX dP exp [−βH(X,P)] (2)

and X = (x1,x2, . . . ,xN )T and P = (p1,p2, . . . ,pN )T denotes the 3N coordinates and momenta respec-
tively of the N particles in the system, β = 1

kBT , kB is the Boltzmann constant, h is Planck’s constant,
and H is the Hamiltonian of the system. Usually, one is interested in the free energy profile along some
order parameter (or reaction coordinate), ξ (X,P). In such cases, the probability of finding the system
at an arbitrary value, ξ0, of ξ (X,P) is

P (ξ0) =
∫

dX dP δ [ξ (X,P)− ξ0] exp [−βH(X,P)]∫
dX dP exp [−βH(X,P)]

(3)

where δ is the Dirac delta function. The corresponding free energy is

F (ξ0) = −kBT log P (ξ0). (4)

To make useful predictions and observations about a system, the free energy difference, ∆FξA→ξB
, between

some initial state, ξA, and a final state, ξB, is required:

∆FξA→ξB
= F (ξB)− F (ξA) = −kBT log

[
P (ξB)
P (ξA)

]
(5)

The obvious, and perhaps nice, feature of Eq. 5 is that we do not have to compute the denominator
of Eq. 3 (that is, the unnormalized Z in Eq. 1); we only require the numerator of Eq. 3. However, the
numerator must be obtained by integrating over the entire phase space volume. This is certainly not
practical in molecular simulations. For practical purposes, we invoke the ergodic hypothesis to compute
the probability densities. From a molecular simulation trajectory spanning a sufficiently long time period
t, the probability density is computed as:

P (ξ0) =
1
t

∫ t

0
δ

[
ξ(X, t′)− ξ0

]
dt′ (6)

Note (1) and the free energy difference is given by Eq. 5. The caveat with the computation of Eq. 5 from
Eq. 6 is that both the states ξ=ξA and ξ=ξB are sufficiently sampled (that is, there is sufficient statistics
to generate a probability distribution). The commonly occurring problem in most molecular simulations
is that the characteristic thermal energy is not sufficient to allow the system to sample regions of the
energy landscape that are separated from low energy regions by large barriers (the barriers are much
larger than kBT ).

Figure 1 illustrates a scenario where the final state ξB cannot be reached from the initial state ξA

in a molecular simulation.Note (2) The obvious reason is the rather high barrier which is can be several
orders of magnitude larger than kBT . In a molecular simulation however, such a reaction would proceed
at a very slow rate.Note (3) In other words, the system will reside at or near the state ξA during the

Note (1)Furthermore in practice, the right side of Eq. 6 is computed via a discretization over time steps or snapshots.
Note (2)Unless you let the simulation run forever, which, of course, is not practical.
Note (3)According to transition state theory, the reaction rate is proportional to e−

∆G‡
RT , where ∆G‡ is the energy barrier, hence

a large ∆G‡ implies a slow reaction rate.
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Figure 1: A generic free energy profile (one-dimensional) of an event or a reaction with an energy barrier
much larger than kBT . The blue ball denotes the system under study.

simulation. In literature, this scenario is known as a rare event, i.e., the event which corresponds to the
system jumping from the energy well ξA into the well ξB rarely occurs.

In molecular simulations, the simplest and most common way to realistically sample the energy
landscape of rare events or slow reactions characterized by ξ is to bias the system, i.e., feed some external
potential energy, V (ξ), along ξ into the system so that other regions of the energy landscape other
than the region around ξA can also be sufficiently sampled. There is an avalanche of biased sampling
techniques in literature. In this tutorial, we focus on umbrella sampling, potential of mean constrained
force, and metadynamics. We will give an overview of each method followed illustrations with simple
reactions with NWChem.
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2 Metadynamics

2.1 Notations

• S (X): Collective variable space of dimension d which is a generic function of the system coordinates
X. More explicitly S (X) = {S1 (X) , S2 (X) , . . . , Sd (X)}, where Si, i = 1, 2, . . . , d, are independent
order parameters that are “collectively” capable of describing the event or reaction of interest.Note (4)

• σi: Width of the Gaussian associated with si (X). σi has the units of Si for each i.

• h0: Effective Gaussian height. It is assumed in NWChem that h0 =

(
d∏

i=1

hi

) 1
d

, where hi is the

height of the Gaussian associated with si (X). h0 has the units of energy.

• τ : Constant time interval between the addition of two successive Gaussians.

• V : History potential. V ≡ V (S (X) , t)

• F : Free energy. F ≡ F (S (X))

2.2 A simplified perspective of metadynamics

Metadynamics is a non-equilibrium molecular dynamics method which accelerates the sampling of the
multidimensional free energy surfaces of chemical reactions on a short-to-moderate simulation time
scale [2, 1, 3, 4]. The accelerated sampling is achieved by adding an external time-dependent bias
potential which is a function of the collective variables to the Hamiltonian of the system. The bias
potential discourages the system from revisiting previous sampled regions of the energy landscape by
depositing repulsive Gaussian potentials centered on the location of collective variables on the energy
landscape. The accumulation of the bias potential in low energy wells allows the system to surmount
energy barriers much more quickly compared to standard molecular dynamics, and hence the system is
has the freedom to explore other regions (particularly high energy regions) of the energy landscape.

A simple way to understand how metadynamics works is to consider the one-dimensional free energy
landscape in Figure 2(a) as a network of two connected empty wells with different widths and depths.
In Figure 2(a), the system (“light” blue ball) is initially lying at the bottom of the deepest well. Our
goal is to use water from an external source to “quickly” drive the ball from the initial state to the final
state. Within the well-ball-water analogy, the basic principles of metadynamics are as follows:
(i) Locate the position of the ball.
(ii) Pour water from a “small Gaussian-shaped” cup into well such that the highest point of the cup
directly faces the ball’s position.
(iii) The presence of water in the well will cause the ball’s position to rise up. Wait for a time period of
τ so that the ball can settle down in it’s new position and then repeat step (i) and (ii) above.

In this scenario, the water is acting as a bias which modifies the ball’s free energy F (s). Thus at any
given time t, the total amount of water is a measure of the total external bias, V (s, t), introduced on the
energy landscape along the collective variable s. Obviously the size of V grows in time. In metadynamics,
V is referred to as the external history potential.Note (5) Therefore at time t, the total energy of the ball
will be F (s) + V (s, t) [because the initial energy at the bottom of the well was F (S) but the external
energy, V (s, t), supplied by the water caused it to rise to that location].

Note (4)In a strict sense a collective variable is not necessarily the same as a reaction coordinate. Specifically, all reaction
coordinates are collective variables but the converse is not true. Collective variables are more generic. However, if the
collective variable can distinguish between the reactant, product, and transition regimes, and in addition capture the
associated reaction kinetics, then it may be regarded as a reaction coordinate.

Note (5)“History” here refers to that fact that at any time t, V (s, t) is determined by all prior deposited Gaussians.
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As more and more cups of water targeting the ball’s position are poured onto the energy landscape,
the ball will slowly escape the first well, make a transition over the barrier, and enter the second well (final
state). If we continue to pour more water into the second well, both wells will be filled, and eventually
the ball will freely diffuse along the surface of constant potential; by this time the energy landscape is
flooded (think of the wells as being fully submerged in water and the ball rolling on the water surface).
Ultimately (that is, in the long time limit) the ball’s total energy, F (s) + V (s, t) = C, where C is a
constant, and therefore, F (s) = −V (s, t) + C.
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Figure 2: Depiction of the progressive modification of the one-dimensional free energy landscape in 2(a) by
external Gaussian bias potentials (2(b)-2(d)). The blue ball denotes the location of collective variable, s, on
the free energy surface. A Gaussian potential centered on the current position of the ball is added every τ time
unit. F (s) is the original free energy profile (solid black line). F (s) + V (s, t) is the biased free energy profile
(broken red line) corresponding to a total of (b) 65 Gaussians (total elapsed time=60τ) (c) 220 Gaussians
(total elapsed time=220τ) (d) 300 Gaussians (total elapsed time=300τ).

Figures 2(b)-2(d) illustrates how metadynamics can be used to accelerate the sampling of the free
energy corresponding to the scenario in Figure 2(a). In Figure 2(b) a total 60 Gaussian cups of water
are used to is pushed from the bottom to near the midpoint of the well (broken red lines). By the time a
total of 220 Gaussian cups of water is poured on the landscape (Figure 2(c)), the ball has enough energy
to roll over the barrier and enter the second well. The ball then begins its departure from the second
well. Finally after the addition 220 Gaussians (Figure 2(d)), both wells are fully filled and the free energy
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F (s) is nearly flattened by the bias potential V (s, t), that is,

F (s) + V (s, t) ≈ constant

and therefore the free energy can be recovered from a constant shift in −V (s, t), that is,

F (s) ≈ −V (s, t) + constant

In essence, Figure 2(d) indicates that the ball can move freely on the water surface–this is known barrier-
less diffusion. In general, barrier-less diffusion of the collective variable(s) is the condition for terminating
a metadynamics-driven free energy simulation. A short movie describing this metadynamics process can
be found on the internet at http://www.youtube.com/watch?v=CtIrLkx6aNo.

The most attractive feature of metadynamics is that it is fairly easy to implement in a computer code.
In sections to follow, we will discuss two variants of direct metadynamics, namely, standard metadynamics
and well-tempered metadynamics.Note (6)

2.3 Technical aspects of Metadynamics

2.3.1 Metadynamics Equations

Having explained how metadynamics works using the simple one-dimensional free energy surface in the
previous section, we are now ready to write down the metadynamics equations. Unless stated otherwise,
we will assume the notations in Section 2.1.

Suppose that prior to any time t during a metadynamics simulations N Gaussians centered on the d-
dimensional collective variable Stg = {Stg

1 , S
tg
2 , . . . , S

tg
d } are deposited on the energy landscape described

by S (X) at times tg = τ, 2τ, 3τ, . . . , Nτ . Then the history potential, V , at an arbitrary value s =
{s1, s2, . . . , sd} of S (X) at time t is given by

V (s, t) =
∑

tg=τ,2τ,...,Nτ

h0 exp


−

d∑

i=1

(
si − S

tg
i

)

2σ2
i


 (7)

In the long time limit (t →∞), F (s) + V (s, t) is constant and therefore an estimate for the free energy
is

F (s) = − lim
t→∞V (s, t) (8)

Equations 7 and 8 constitute standard metadynamics.
One issue with standard metadynamics is that often the bias, V , does not converge smoothly (it

fluctuates about some average value). Another, and perhaps very crucial, issue with standard metady-
namics is when to terminate the simulation. There is the of risk of driving the system outside the domain
of interest into unwanted higher energy regions if the simulation is not terminated at the appropriate
time. To alleviate this problem, well-tempered metadynamics [4, 5] was introduced. In well-tempered
metadynamics, the smooth convergence of V is ensured by gradually decreasing the the height of the
Gaussian (so that in the t →∞ regime the Gaussians will vanish). The amount of reduction is depends
on two factors: (i) The amount of bias, V , that is already present (ii) A fictitious temperature ∆T , which,
loosely speaking, limits the free energy exploration to the range [kBT, kB(T + ∆T )]. The well-tempered
metadynamics equations are as follows:

V (s, t) =
∑

tg=τ,2τ,...,Nτ

h(t) exp


−

d∑

i=1

(
si − S

tg
i

)

2σ2
i


 (9)

Note (6)“Direct” here implies that the bias potential acts directly on the collective variable(s). Currently only direct metady-
namics is implemented in NWChem. There is, for example, Lagrangian metadynamics, in which the collective variable, s,
is coupled to an auxiliary particle, s̃, of mass M via a harmonic spring of spring constant k. In fact direct metadynamics
corresponds to the k → ∞ and M → 0 limits of Lagrangian metadynamics. See Ref. [3] and [4] for the different flavors of
metadynamics.
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where the time dependent height h(t) is given by

h(t) = h0 exp

[
−V

(
Stg , t

)

kB∆T

]
(10)

In this case the free energy is given by

F (s) = −
(

1 +
T

∆T

)
lim
t→∞V (s, t) (11)

From Eq. 10, it is easy to see that in the limit ∆T → ∞, h(t) = h0, and therefore Eq. 9 reduces to
Eqs. 7. Similarly ∆T → ∞ reduces Eq. 11 to Eq. 8. Thus in the limit as ∆T → ∞ well-tempered
metadynamics reduces to standard metadynamics. When ∆T → 0, h(t) = 0, and hence the simulation
reduces to regular molecular dynamics (because according Eq. 9, the bias, V =0 for all values of t). A
finite positive value of ∆T corresponds to well-tempered metadynamics. There is no hard-and-fast rule
for choosing ∆T . However the rule of thumb is that if an estimate of highest energy barrier, Eb, is known
a priori, then ∆T may be determined from kB∆T ∼ Eb.

2.3.2 Collective variables

Choosing the right set of collective variables is the most important aspect of a metadynamics simulation;
the success or failure of the reaction mechanism or event one wishes to simulate depends heavily on the
choice of the collective variables. The collective variables should be able to clearly distinguish between
the initial state, transition state, and final state. Usually, a priori knowledge of the mechanism under
study is helpful in choosing the collective variables. It is also important to minimize the dimension, d,
of the collective variable space as much as possible. In Most metadynamics simulations 1 ≤ d ≤ 3. It is
important to note that the cost of the simulation grows enormously with d Note (7) and convergence may
also be problematic. The following collective variables are implemented in NWChem [8]:

1. Bond distance

2. Bond angle

3. Dihedral angle

4. Coordination number

5. Average distance of an adatom (or impurity) from a surface layer along the surface normal

2.3.3 Other issues: Choice of Gaussian height and widths

It has been shown that error ε in the free energy estimate from metadynamics is related to h0, σ, and
τ by ε ∝ √

h0σ/τ . If Gaussian of large height and width are deposited at a fast rate (large τG), the
free energy surface will be explored at a fast pace, but the estimated profile will be affected by large
errors. Conversely, if small Gaussian hills are deposited at a relatively slow rate, the free energy surface
will be sampled more accurately but the computational burden will grow immensely. In fact, σ controls
the resolution of the estimated free energy surface; if σ is large, the resolution is poor; if σ is small the
resolution good. Finding optimal choice of {h0, σ, τ} is not easy but our experience have shown that
for ab initio metadynamics simulations with 5-10 kcal/mol barriers, h0=0.0001-0.0003 a.u. (≈0.06-0.19
kcal/mol); σ=0.05-0.1 (here σ is in the units of the collective variable) and τ=250-500 a.u. (≈6.1-12.1
fs) works fairly well. For very large barriers (e.g. 100 kcal/mol) larger value of h0 may be used. These
are mere estimates and it is up to the user calibrate {h0, σ, τ} to obtain reliable free energies.

Note (7)The computational cost is proportional to 1/σd
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2.4 Practical examples using NWChem

2.4.1 Example 1: Dissociation barrier of CH3Cl → CH3
+ + Cl−

We now illustrate how to estimate the barrier of the above reaction at 300 K from Car-Parrinello meta-
dynamics simulations. The collective variable is the C-Cl bond distance, h0=0.001 a.u., σ=0.1 a.u., and
τ=500 a.u. The full input file is provided in Appendix A.

2.4.2 Results of Example 1

In Figure 3 the plot of the C-Cl distance versus the number of Gaussians is depicted. Complete dissocia-
tion occurs after the addition of 1100 Gaussians, with bond formation occurring briefly after the addition
of 1250 Gaussians. Beyond this point, the collective variable diffuses over the energy landscape, that is,
bonding and dissociation occur back-and-forth, and therefore the reaction is considered complete. If one
is interested in the free energy error analysis, then the simulation must be allowed to run for long times,
followed by block averaging (see Ref. [3] for the details of the error analysis). Note that no attempt
was made to tune the simulation parameters (box size, kinetic energy cut-off, metadynamics parameters,
etc.). In a real problem one may be have carefully calibrate the input parameters to obtain the best
estimate for the free energies. In Figure 4, the metadynamics-derived free energy (reconstructed with
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Figure 3: Evolution of the C-Cl bond distance as a function of the number of Gaussians.

1250 Gaussians) is compared to the O K curve from single point energy calculations. There is good
agreement near and at the the minimum but a non-negligible discrepancy can be seen at r >3 Å and
beyond due thermal and dynamical effects. The metadynamics dissociation barrier of 81 kcal/mol agrees
well with the experimental value of 83.5 kcal/mol [9].

2.4.3 Example 2: Cl− + CH3Cl ⇀↽ ClCH3 + Cl− SN2 exchange reaction barrier

To model the barrier to the above exchange reaction, we require a collective variable of space of dimension
2 (since we need to describe the two C-Cl interactions independently). There are two choices of the
collective variable: (i) the two C-Cl distances or (ii) the coordination number of C with respect to each
Cl. Here we employ option (ii) since the reaction proceeds much quicker. The coordination number is
defined as a Fermi-like function:

N(C− Cl) =
1

1 + exp [n (rC−Cl − r0)]

9
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Figure 4: Comparison of 0 K dissociation curve to the 300 K metadynamics free energy curves of the reaction
CH3Cl(g) → CH3(g)+ + Cl(g)−.

where rC−Cl is the C-Cl distance, r0 denotes the C-Cl cut-off radius, and n measures the sharpness of the
Fermi function.Note (8) We essentially want to drive the initial state (n(C− Cl1), n(C− Cl2)) ≈(1,0) to
the final state (N(C− Cl1), N(C− Cl2)) ≈(0,1), where N(A− B) is the coordination number of A with
respect to B. Cl1 denotes the Cl initially attached to C and Cl2 denotes the initial attacking chloride.
The metadynamics parameters were r0=4.157397 a.u. (2.2 Å), κ=5.29177 a.u. (10 Å−1), h0=0.00025
a.u., σ=0.1 a.u., and τ=500 a.u. The full input file is provided in Appendix B.

2.4.4 Results of Example 2

Since the coordination number collective variable depends on the C-Cl distances, it is useful to monitor
the reaction by tracking the variations in the distances as the Gaussian potentials are injected on to
the energy landscape. In Figure 5, we depict the variations in the bond distances with respect to the
Gaussian potentials. After the addition of 60 Gaussians, the reactant well is filled and the first exchange
barrier crossing (BC) occurs. At the first BC, the C-Cl1 and C-Cl2 distances are 2.3 Å each, in agreement
with theoretical estimates of 2.3-2.4 Å [10]. After the addition of a total of 133 Gaussians, the product
well is filled and the second exchange BC occurs.

To obtain an accurate estimate of the exchange barrier, multiple exchanges are allowed to occur. We
thus reconstructed the free energy surface with 330 Gaussians. This is shown in Figure 6. The two wells
show some asymmetry with respect the transition point but due inadequate sampling; if the sampling is
carried out for long periods a fully symmetric surface will be obtained. The exchange barrier from the
reactant well (N(C− Cl1)) to the transition state is computed to be 8.5 kcal/mol; the barrier from the
product to the transition state is 9.2 kcal/mol. Both estimates are in good agreement the experimental
estimate of 8.7 kcal/mol [11].

Note (8)Here, n, which has units of inverse length, is analogous to 1
kBT

in the Fermi-Dirac function. See the Pseudopotential
Plane Wave section of the NWChem manual for more information on the coordination number collective variable.
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Figure 5: Evolution of the C-Cl distances as a function of the number of Gaussians. Cl1 is the Cl initially
attached to C and Cl2 is the initial attacking chloride (that is, Cl−). BC denotes “barrier crossing.”

Figure 6: Free energy surface of the SN2 exchange gas phase reaction Cl− + CH3Cl ⇀↽ ClCH3 + Cl− from
metadynamics using the coordination numbers of C with respect to each Cl atom as the collective variables.
The free energy was generated using the first 330 Gaussians.
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3 Umbrella sampling-WHAM

3.1 Notations

• The terms “window” and “simulation” can be used interchangeably

• Nw: Number of windows used in the umbrella sampling calculations

• ξ: Reaction coordinate

• ξi: Reaction coordinate characterizing the center of window i

• Ki: Spring constant describing window i

• Vi(ξ): Biasing potential of the ith window

• ρ(ξ): Optimal unbiased probability of finding the system at ξ

• ρ
(b)
i (ξ): Biased probability of finding the system at ξ in window i

• ni: Number of snapshots used to construct ρ
(b)
i in simulation i Note (9)

• Fi: Free energy constant of window i

• β: 1
kBT

3.2 Short introduction

Simply speaking, umbrella sampling is piecewise bias sampling of the energy landscape. Each piece is
defined by a biasing potential known as “umbrella” potential. The biasing potential, Vi(ξ), serves to
confine the variations in the reaction coordinate, ξ, around some fixed value ξi, and therefore enables a
more efficient sampling in the region around ξi [6, 7]. The region sampled in the presence of the biasing
potential is called a window. After windows are sampled, their respective probability distributions (these
are the biased probability distributions) must be combined to yield a single unbiased optimal probability
distribution. Once the unbiased probability distribution is known, the free energy can be estimated using
Eq. 4 (or Eq. 5).

The weighted histogram analysis method (WHAM) is a scheme for “stitching” the biased probability
distributions from the umbrella sampling together to yield a single unbiased probability distribution. We
must mention that the probability distributions of neighboring windows usually overlap.

3.3 The WHAM equations

The WHAM equations for a one dimensional reaction coordinate are [6]:

ρ(ξ) =

Nw∑

i=1

niρ
(b)
i (ξ)

Nw∑

j=1

nje
−β(Vj(ξ)−Fj)

(12)

e−βFi =
∫

e−βVi(ξ)ρ(ξ)dξ (13)

Equations 12 and 13 must be solved self-consistently since the Fis are unknown. See Refs. [6] and [7]
for the derivation of the WHAM equations. Extension to multidimensional cases is straightforward (See
Ref. [6]).

Note (9)By snapshots, we mean the total number of times the geometry is saved in simulation i. It should also be pointed out
that ni can be different for each window since certain windows require longer sampling times.
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3.4 Using the WHAM equations in computer simulations

1. Perform Nw simulations with the biasing (window) potentials, Vi(ξ), centered on successive values,
ξi, of the reaction coordinate, where i = 1, 2, · · · , Nw. The most commonly used window potential
is the harmonic function Vi(ξ) = Ki(ξ − ξi)2.Note (10)

2. For each simulation i, compute the corresponding biased probability distribution ρ
(b)
i (ξ) (normalized

histogram). To construct the histograms, we consider a range, [ξmin, ξmax], which contains every ξ
from each simulation. We choose a sufficiently small bin width of ∆ξ. The total number of bins,
M , is therefore M = 1 + int

(
ξmax−ξmin

∆ξ

)
, where int(f) denotes the integer portion of the real

number f . In discussion to follow, ρ
(b)
i (ξj) denotes the biased probability of finding the system

at ξ = ξj in window i.

3. The WHAM equations 12 and 13 must be solved iteratively. It is convenient to use the histogram
parameters of the biased probability distributions above, that is, ξmin, ξmax, ∆ξ, and M , to generate
the optimal unbiased probability distribution ρ(ξ). It is also convenient to set e−βFi = µi. The
discretized versions of equations 12 and 13 used in the computer code for calculating the PMF are:

ρ(ξj) =

Nw∑

i=1

niρ
(b)
i (ξj)

Nw∑

i=1

ni

µi
e−βVi(ξj)

(14)

µk =
M∑

i=1

ρ(ξi)e−βVk(ξi) (15)

In equation 14, j = 1, 2, · · · ,M (j labels the histogram bins) and in equation 15, k = 1, 2, · · · , Nw

(k labels the simulation/window). Starting with an initial guess of µold
k = 1 for each k, each ρ(ξj)

can be estimated from equation 14. The estimates for ρ(ξj), is then used to obtain new values of
µnew

k using equation 15. If self-consistency is not reached, then replace µold
i with µnew

i and continue
the iteration procedure. The following criterion is used for self-consistency:

Nw∑

j=1

(
1− µnew

j

µold
j

)2

< ε

where the tolerance, ε, is typically set to 10−7. Please note that for cases where ρ(ξj)=0 in equa-
tion 14, we reset it a positive number practically close to zero (e.g. 1−15) to ensure that ln(ρ(ξj))
is finite.

4. Finally, the unbiased potential of mean force (PMF), A, is computed as:

A(ξj) = − 1
β

ln(ρ(ξj)) + A0

where j = 1, 2, · · · ,M and A0 is an arbitrary constant. We use A0 = max{ 1
β ln(ρ(ξj))}|Mj=1 so that

the lowest free energy is zero.
Note (10)The prefactor 1

2
on the rightside is omitted in NWChem.
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3.5 Practical example using NWChem

In this section we illustrate how to compute the PMF for the reaction

CH3Cl(g) → CH3(g)+ + Cl(g)−

using trajectories from Car-Parrinello molecular dynamics (CPMD) simulations at 300 K. The reaction
coordinate, ξ, is the C-Cl bond distance. The biasing potential was Vi(ξ) = Ki(ξ−ξi)2. The total number
of windows Nw=29 and the window centers are 1.7 Å to 4.5 Å in increments of 0.1 Å, that is, ξ1=1.7 Å,
ξ2=1.8 Å,......, ξ29=4.5 Å. The spring constant Ki was set to 0.3 a.u for each i. (0.3 Ha/Bohr2). As an
example, the NWChem input file for the ξ1=1.7 Å window is provided in Appendix C.

3.6 Results

In Figure 7, the biased probability distribution of each window is depicted. The overlap between neigh-
boring windows can be seen. However, each window is fairly localized around its center, implying that
the spring is tight (large Ki). However because the window centers are sufficiently close and so this
is not a problem. In a costly simulation, where such a large number of windows cannot be used, the
spacing between the windows and spring constant of each window must be carefully to ensure that there
is sufficient overlap between neighboring windows while at the same time minimizing the computational
cost.
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Figure 7: Biased probability distribution of each window. Different coloring schemes are used to distinguish
between overlapping window.

Using the Fortran 77 code in Appendix D, we generated the WHAM free energy curve and compared
to the 0 K dissociation. This is depicted in Figure 8. The WHAM dissociation energy of 80 kcal/mol
is in good agreement with the experimental value of 83.5 kcal/mol but shows some deviation the curve
generated from the single point energies in the large separation region.
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Figure 8: Comparison of 0 K dissociation curve to the 300 K umbrella-sampling WHAM free energy curves
of the reaction CH3Cl(g) → CH3(g)+ + Cl(g)−.
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Appendix A: Metadynamics input file for CH3Cl → CH3
+ + Cl−

title "CH3Cl"
echo
start CH3Cl
scratch_dir ./perm_meta
permanent_dir ./perm_meta
memory 1600 mb

charge 0

geometry units angstrom nocenter noautosym noautoz print xyz
C 0.000000 0.000000 0.000000
Cl 1.799895 0.017342 -0.008727
H -0.323446 -0.918592 0.460310 mass 2.0
H -0.340365 0.851532 0.565115 mass 2.0
H -0.340579 0.057144 -1.020309 mass 2.0
end

nwpw
simulation_cell units angstroms

boundary_conditions periodic
SC 15.0

end
cutoff 35.0
mult 1
lmbfgs
mapping 2
xc pbe96
lcao_skip

end

nwpw
rotation off

end

#Optimize the wave function
task pspw energy

#CPMD parameters
nwpw

car-parrinello
Nose-Hoover 1200.0 300.0 1200.0 300.0
time_step 5.0
fake_mass 600.0
scaling 1.0 1.0

end
end

#Briefly equilibrate
nwpw

car-parrinello
loop 10 100
fei equi.fei
xyz_filename equi.xyz
ion_motion_filename equi.ion_motion
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emotion_filename equi.emotion
end

end
task pspw car-parrinello

#Metadynamics begins here
nwpw

#This is not necessary but I prefer to define separate metadynamics output files
#Otherwise the metadynamics output will be appended to equi.*
car-parrinello

loop 10 2000 #inner-loop outer-loop
fei meta.fei
xyz_filename meta.xyz
ion_motion_filename meta.ion_motion
emotion_filename meta.emotion

end
#Metadynamics block
metadynamics

print_shift 1 #prints the bias potential every 1000 time steps
update 10 #adds a Gaussian every 10*(inner-loop)=100 time steps
bond 1 2 w 0.001 sigma 0.10 #bond distance between C-Cl collective variable

end
end
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
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Appendix B: Metadynamics input file for Cl+CH3Cl ⇀↽ ClCH3 + Cl−

It is important to note the following: In the coord number lines inside the metadynamics block, range
-0.2 1.2 sets each coordination number range to be [-0.2,1.2]. We did this to ensure the range actual
[0,1] of each collective variable is fully covered; if one sets range 0.0 1.0, for example, some of the
information at the extreme points (1,0) and (1,0) may be missing. Furthermore nrange 101 implies that
the bias potential will be computed on a 2D grid with 101 points along each variable. For a wide range
of coordination number large value nrange may be used.

title "SN2-Exchange"
echo
start CH3Cl+Cl-
scratch_dir ./perm_sn2_cn
permanent_dir ./perm_sn2_cn
memory 1950 mb
charge -1

geometry units angstrom nocenter noautosym noautoz print xyz
C 0.000000 0.000000 0.000000
Cl 1.799895 0.017342 -0.008727
Cl -4.000000 0.017342 -0.008727
H -0.323446 -0.918592 0.460310 mass 2.0
H -0.340365 0.851532 0.565115 mass 2.0
H -0.340579 0.057144 -1.020309 mass 2.0
end

nwpw
simulation_cell units angstroms

boundary_conditions periodic
SC 15.0

end
cutoff 30.0
mult 1
lmbfgs
mapping 2
xc pbe96
lcao_skip

end

nwpw
rotation off

end

task pspw energy

nwpw
car-parrinello
Nose-Hoover 1200.0 300.0 1200.0 300.0
time_step 5.0
fake_mass 600.0
scaling 1.0 1.0
end

end

# Briefly equilibrate
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nwpw
car-parrinello

loop 10 100
fei equi.fei
xyz_filename equi.xyz
ion_motion_filename equi.ion_motion
emotion_filename equi.emotion

end
end
task pspw car-parrinello

# Begin Metadynamics here
nwpw

car-parrinello
loop 10 1000
fei meta_sn2_cn.fei
xyz_filename meta_sn2_cn.xyz
ion_motion_filename meta_sn2_cn.ion_motion
emotion_filename meta_sn2_cn.emotion

end
metadynamics
print_shift 1
update 10

coord_number sprik index1 1 index2 2 n 5.29177 r0 4.157397 w 0.00025 sigma 0.10 range -0.2 1.2 nrange 101
coord_number sprik index1 1 index2 3 n 5.29177 r0 4.157397 w 0.00025 sigma 0.10 range -0.2 1.2 nrange 101

end
end
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
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Appendix C: Umbrella sampling input file for CH3Cl → CH3
+ + Cl−

title "Umbrella sampling xi=1.7 Ang"
echo
start CH3Cl
scratch_dir ./perm_us_1.7
permanent_dir ./perm_us_1.7

#Memory
memory 1950 mb

#Charge
charge 0

#Begin PSPW block
nwpw

# Box size
simulation_cell units angstroms

boundary_conditions periodic
SC 11.4

end

# Plane KE cut-off
cutoff 35.0

# multiplicity
mult 1

# Minimizer
lmbfgs
mapping 2

# XC Functional
xc pbe96
lcao_skip

# CPMD block
car-parrinello

Nose-Hoover 1200.0 300.0 1200.0 300.0
time_step 5.0
fake_mass 600.0
loop 10 1000
scaling 1.0 1.0
fei 1.7.fei
xyz_filename 1.7.xyz
ion_motion_filename 1.7.ion_motion
emotion_filename 1.7.emotion

end

# Disable molecular rotation
rotation off

# Biasing window potential
auxiliary_potentials

nonfragment
index_start 1
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bond_spring 1 2 0.3 3.21253418 # index1, index2, K (in a.u.), window_center (in a.u.)
end

end
end
#End PSPW block

#Atomic positions; Hydrogen is replaced with Deuterium by making the mass 2.0
geometry units angstrom nocenter noautosym noautoz print xyz

C 0.000000 0.000000 0.000000
Cl 1.699897 0.016569 -0.008709
H -0.361760 -0.910123 0.456135 mass 2.0
H -0.378098 0.842982 0.559997 mass 2.0
H -0.377787 0.056198 -1.010534 mass 2.0

end

# Optimize wavefunction
task pspw energy

#CPMD
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello
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Appendix D: Fortran 77 Codes for 1D WHAM Calculations

The FORTRAN 77 code, WHAM 1D.f, for computing the PMF is given below. WHAM 1D.f contains
a subroutine PROB. PROB computes the following for a given window i for specified range [ξmin, ξmax]
for ξ using ni snapshots:

(a) The biased probability distribution, ρ
(b)
i (ξ), (histogram technique)

(b) The biasing potential Vi(ξ) = Ki(ξ − ξi)2

The code assumes that the spring constant KS is constant for each window. KS must be converted into
a 1D array if different spring constants are used (e.g. DATA statement).

! COMPUTES THE FREE ENERGY DIFFERENCE FOR A SINGLE REACTION COORDINATE
! USING THE "WEIGHTED HISTOGRAM ANALYSIS METHOD" (WHAM).
! REFERENCE: B. ROUX, COMPUTER PHYSICS COMMUNICATIONS VOL. 91, PP. 275-282 (1995)

! THE CODE ASSUMES THAT THE TRAJECTORIES 1.7.xyz, 1.8.xyz,....., 4.5.xyz ARE PRESENT

! RAYMOND ATTA-FYNN
! EMSL, PACIFIC NORTHWEST NATION LAB
! ORIGINALLY WRITTEN ON OCTOBER 23, 2009
! MODIFIED ON JUNE 1, 2011 WITH COMMENTS

PROGRAM WHAM_1D
IMPLICIT NONE
INTEGER NW, I, J, K, N, NMAX1, NMAX2, NSAMP
PARAMETER (NMAX1=300,NMAX2=5000)

! NMAX1 IS THE MAX WINDOW DIMENSION
! NMAX2 IS THE MAX NUMBER OF HISTOGRAM BINS

DOUBLE PRECISION XI_MAX, XI_MIN, DXI, XI_I, KB, TEMP, BETA
DOUBLE PRECISION L,DT,TCUT,KS
DOUBLE PRECISION NI(NMAX1) ! SAMPLED SNAPSHOTS IN A GIVEN WINDOW
DOUBLE PRECISION W(NMAX1,NMAX2) ! BIASING POTENTIAL
DOUBLE PRECISION P_BIASED(NMAX1,NMAX2) ! BIASED DISTRIBUTION
DOUBLE PRECISION P_UNBIASED(NMAX2) ! OPTIMAL ESTIMATE OF UNBIASED DISTRIBUTION
DOUBLE PRECISION FI(NMAX1) ! FI = EXP(-fi*BETA)
DOUBLE PRECISION HIST(NMAX2) ! DISTRIBUTION (HISTOGRAM) OF A GIVEN SIMULATION
DOUBLE PRECISION EPS,TOL,FI_OLD,PMIN,TMP1,TMP2
DOUBLE PRECISION V(NMAX2),FAC,NUMERATOR,DENOMINATOR,FI_NEW
CHARACTER F*3 ! THIS WAS DEFINED FOR FILE READING PURPOSES

*****************************EDIT THIS SECTION********************************
XI_MIN=1.65D0 ! MIN REACTION COORDINATE IN ANGSTROM
XI_MAX=4.55D0 ! MAX REACTION COORDINATE IN ANGSTROM
DXI =0.025D0 ! BIN WIDTH
N=1+DINT((XI_MAX-XI_MIN)/DXI) ! TOTAL NUMBER OF BINS
L =11.4D0 ! SIMULATION BOX LENGTH IN ANGSTROM
DT =30.D0 ! TIME INTERVAL FOR SAVING CONFIGURATIONS IN A.U.
DT =DT/(41.3413733D+3) ! CONVERT TIME STEP FROM AU TO PICOSECONDS
TCUT =1.D0 ! EQUILIBRATION TIME IN PICOSECONDS
KS =0.3D0 ! SPRING CONSTANT IN A.U. (SAME FOR EACH WINDOW)
NSAMP =2 ! SAMPLE EVERY OTHER POINT.

! TO SAMPLE AT A LOWER RATE INCREASE NSAMP.
KB =0.316679D-5 ! BOLTZMANN’S CONSTANT IN A.U./KELVIN
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TEMP =300.D0 ! SIMULATION TEMPERATURE IN KELVIN
BETA =1.D0/KB/TEMP ! INVERSE Kb*T
FAC =627.509D0 ! CONVERSION FACTOR FROM A.U. TO KCAL/MOL
NW =29 ! TOTAL NUMBER OF WINDOWS
TOL =1.D-7 ! SCF TOLERANCE

*****************************END EDITING***************************************

!*********************COMPUTATION BEGINS HERE**********************************

DO I = 1, NW ! LOOP OVER WINDOWS
XI_I = 1.7D0 + (DBLE(I)-1.D0)*0.1D0 ! COMPUTE CENTRAL COORDINATE OF WINDOW I
WRITE(F,’(F3.1)’)XI_I ! CHARACTER F TAKES VALUES 1.7, 1.8, 1.9,......,4.5

! XYZ FILES NAMED 1.7.xyz, 1.8.xyz,......, 4.5.xyz WILL BE OPENED SUCCESSIVELY
! INSIDE THE SUBROUTINE PROB BELOW

CALL PROB(XI_MIN,DXI,N,XI_I,L,DT,TCUT,KS,NSAMP,F,K,HIST,V) ! CALL SUBROUTINE
NI(I)=DBLE(K)
DO J = 1, N ! LOOP OVER HISTORGRAM POINTS IN WINDOW I

P_BIASED(I,J)=HIST(J) ! BIASED DISTRIBUTION OF WINDOW I AT COORDINATE XI_J
W(I,J)=DEXP(-BETA*V(J)) ! RESTRAINING POTENTIAL OF WINDOW I AT COORDINATE XI_J

END DO
END DO

! INITIAL GUESS OF UNITY FOR FI = DEXP(-fi*BETA)
DO I = 1, NW

FI(I) = 1.D0
END DO

100 CONTINUE

DO J = 1, N
NUMERATOR = 0.D0
DENOMINATOR = 0.D0

! COMPUTING THE DENOMINATOR OF EQUATION (1)
DO I = 1, NW

DENOMINATOR = DENOMINATOR + NI(I)*W(I,J)/FI(I)
END DO

! COMPUTING THE NUMERATOR OF EQUATION (1)
DO I = 1, NW

NUMERATOR = NUMERATOR + NI(I)*P_BIASED(I,J)
END DO

TMP1=NUMERATOR/DENOMINATOR

! CONVERT ZERO PROBABILITY TO VERY SMALL POSITIVE NUMBER
IF(TMP1.EQ.0.D0)TMP1=1.D-15

P_UNBIASED(J)=TMP1

END DO

! COMPUTE NEW FI BASED AND THE OLD USE EPS=SUM{(1-FI_NEW/FI_OLD)**2}
! AS THE CONVERGENCE PARAMETER

EPS = 0.D0
DO I = 1, NW
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FI_OLD = FI(I)
FI_NEW = 0.D0
DO J = 1, N

FI_NEW = FI_NEW + W(I,J)*P_UNBIASED(J)
END DO
FI(I)=FI_NEW
EPS = EPS + (1.D0 - FI_NEW/FI_OLD)**2

END DO
WRITE(*,*)EPS
IF(EPS.GT.TOL)GOTO 100

WRITE(*,*)’CONVERGED’

! FIND FREE ENERGY SHIFT
PMIN = -1.D+8
DO J = 1, N

PMIN=MAX(PMIN,(1.D0/BETA)*DLOG(P_UNBIASED(J)))
END DO

! PRINT PMF
OPEN(10,FILE=’FREE_ENER.dat’,STATUS=’UNKNOWN’)
DO J = 1, N

TMP1= XI_MIN + DXI*(DBLE(J)-0.5D0) ! REACTION COORDINATE IN ANGSTROM
TMP2=(-(1.D0/BETA)*DLOG(P_UNBIASED(J))+PMIN)*FAC ! PMF IN KCAL/MOL
WRITE(10,1000)TMP1,TMP2

END DO
1000 FORMAT(2F12.6)

CLOSE(10)
WRITE(*,*)’PMF printed to FREE_ENER.dat’

STOP

END

!*********************SUBROUTINE PROB BEGINS HERE************************************
!====================================================================================
! FOR A GIVEN WINDOW, THIS SUBROUTINE RETURNS:
! (a) THE NUMBER OF SAMPLED SNAPSHOTS (NI)
! (b) THE NORMALIZED PROBABILITY DISTRIBUTION (HIST)
! (c) THE BIASING POTENTIAL AROUND THE WINDOW CENTER (V)

SUBROUTINE PROB(XI_L,DXI,N,XI_I,L,DT,TCUT,KS,NSAMP,F,NI,HIST,V)
IMPLICIT NONE
INTEGER I,J,N,NC,NAT,BIN,NSAMP,T_TOT,NMAX,NI
PARAMETER (NMAX=5)
DOUBLE PRECISION L,XI_L,XI_U,DXI,DT,TCUT,FAC,XI_I,KS
DOUBLE PRECISION POS(3,NMAX),TMP,DIST
DOUBLE PRECISION HIST(N),V(N),TMP2
CHARACTER F*3
DATA FAC/1.889725988578923D0/
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! OPEN FILES 1.7.xyz, 1.8.xyz,........,4.5.xyz (based on F)
OPEN(10,FILE=F//’.xyz’,STATUS=’OLD’)

! THE OUTPUT NORMALIZED PROBABILITY DISTRIBUTION WILL STORED IN
! THE FILES PROB_1.7.dat, PROB_1.8.dat, AND SO ON.

OPEN(11,FILE=’PROB_’//F//’.dat’,STATUS=’UNKNOWN’)

DO I = 1, N ! INITIAL HISTOGRAM VALUES TO ZERO
HIST(I) = 0.D0

END DO

NC = 0 ! INITIALIZE TOTAL NUMBER OF SNAPSHOTS TO ZERO
NI = 0 ! INITIALIZE TOTAL NUMBER OF SAMPLED SNAPSHOTS TO ZERO

! READING SNAPSHOTS UNTIL END OF FILE IS REACHED
DO WHILE(.TRUE.)

READ(10,*,ERR=30,END=40)NAT
READ(10,*,ERR=30,END=40)
DO I = 1, NAT

READ(10,*,ERR=30,END=40)F,(POS(J,I),J=1,3),TMP,TMP,TMP
END DO
NC = NC + 1
T_TOT=DT*DBLE(NC) ! TOTAL SIMULATION TIME UP TILL NOW
IF(MOD(NC,NSAMP).NE.0)GOTO 50 ! SAMPLING
IF(T_TOT.LT.TCUT)GOTO 50 ! DISCARD PRE-EQULIBRATION SNAPSHOTS
NI = NI + 1
DIST = 0.D0 ! INITIALIZE C-Cl DISTANCE TO ZERO
DO J = 1, 3 ! COMPUTE DIST (IN ANGSTROM) SUBJECT TO PBC

TMP = POS(J,1)-POS(J,2)
TMP = TMP - L*DNINT(TMP/L)
DIST = DIST + TMP*TMP

END DO
DIST=DSQRT(DIST)
DIST=DIST-XI_L ! SHIFT DISTANCE RELATIVE LOWER BOUND
BIN = 1 + DINT(DIST/DXI) ! LOCATE BIN
IF(BIN.GT.N)GOTO 50 ! DISCARD POINTS GREATER THAN XI_L
HIST(BIN)=HIST(BIN) + 1.D0 ! PLACE IN APPROPRIATE BIN

50 CONTINUE
END DO

30 CONTINUE
WRITE(*,*)’ERROR IN READING INPUT FILE’

40 CONTINUE
CLOSE(10)

! COMPUTE NORMALIZATION FACTOR
TMP = 0
DO I = 1, N

TMP = TMP + HIST(I)
END DO

! NOTE THAT, IN PRINCIPLE, TMP=DBLE(NI)

! COMPUTE NORMALIZED DISTRIBUTION AND BIASING POTENTIAL
WRITE(11,’(A)’)’# COORDINATE POTENTIAL PROBABILITY’
DO I = 1, N

TMP2 = XI_L + DXI*(DBLE(I)-0.5D0) ! REACTION COORDINATE IN ANGSTROM
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HIST(I) = HIST(I)/TMP ! NORMALIZED PROBALITY AT TMP2
V(I) = KS*(TMP2-XI_I)**2 ! BIASING WINDOW POTENTIAL
V(I) = V(I)*FAC**2 ! CONVERT POTENTIAL TO A.U.
WRITE(11,’(3F12.6)’)TMP2,HIST(I),V(I) ! WRITE OUT INFORMATION

END DO
CLOSE(11)

RETURN
END
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