Hi,
Would you please be so kind as to help me deal with the Mulliken analysis?
I wrote the following:
start nw
geometry
Sr 0.00000000 0.0 -0.3220517
H -1.94061126 0.0 -1.2975569
H 1.94061126 0.0 -1.2975569
end
basis spherical
* library def2-svpd
end
ecp
Sr library def2-ecp
end
dft
cgmin
xc pbe0
disp vdw 3
end
property
mulliken
end
task DFT property
On the way out I have:
----------------------------
Mulliken population analysis
----------------------------
Total S,P,D,... shell population
--------------------------------
Atom S P D
--------------------------------------------------------------------------------------
1 Sr 2.63592 6.38674 0.51922
2 H 1.21974 0.00933 0.00000
3 H 1.21974 0.00933 0.00000
----- Total gross population on atoms ----
1 Sr 38.0 9.54187
2 H 1.0 1.22906
3 H 1.0 1.22906
----- Bond indices -----
1- 1 0.00000 1- 2 0.96111 1- 3 0.96111
2- 1 0.96111 2- 2 0.00000 2- 3 0.00681
3- 1 0.96111 3- 2 0.00681 3- 3 0.00000
Large bond indices
------------------
1 Sr- 2 H 0.96111
1 Sr- 3 H 0.96111
Free electrons Valency
Number of Sum of + Bond indices - Bond indices
Valency Free electrons Bond indices =Mulliken charge = Net spin population
1 Sr 1.92222 7.61965 1.92222 9.54187 -0.00000
2 H 0.96792 0.26114 0.96792 1.22906 0.00000
3 H 0.96792 0.26114 0.96792 1.22906 0.00000
Do I understand correctly that 28 of the 38 strontium electrons are replaced by pseudo-potential, plus two electrons from hydrogen, so there are a total 38 - 28 + 2 (H) = 12 electrons? That is equal the sum of:
1 Sr 38.0 9.54187
2 H 1.0 1.22906
3 H 1.0 1.22906
The partial atomic charges will be equal to 1.22906 - 1 = .22906 e on Hydrogen and 9.54187 - 10 = -0.45813 e on strontium, is not it?
"Number of Free electrons" is the core electrons (minus pseudo-potential electrons ) is not involved in the formation of bonds, is not it?
|