The following input deck will converge without any problems, using an SCF as a starting guess for the DFT, and setting "tolerances tight" to avoid more loose integral and matrix element calculations during the early iterations of DFT.
Bert
start nw
memory stack 600 mb heap 100 mb global 800 mb
charge 0
geometry
C -0.60565725 1.25747713 0
C -1.39183577 0.104224 0
C -0.78617852 -1.15325313 0
C 0.60565725 -1.25747713 0
C 1.39183577 -0.104224 0
C 0.78617852 1.15325313 0
H -1.0766783 2.23541955 0
H -2.47426927 0.18527902 0
H -1.39759097 -2.05014053 0
H 1.0766783 -2.23541955 0
H 2.47426927 -0.18527902 0
H 1.39759097 2.05014053 0
end
basis spherical
* library aug-cc-pvdz
end
scf
vectors output nw.movecs
end
task scf
dft
tolerances tight
CONVERGENCE density 1e-6
xc pbe0
vectors input nw.movecs
end
cosmo
dielec 78.4
end
esp
recalculate
probe 0.07
range 0.3
factor 1
spacing 0.02
end
property
dipole
quadrupole
end
task DFT property
task esp
Quote:P99 Feb 13th 6:22 amUnfortunately, neither an increase the number of iterations (up 500) nor a spherical basis are not help.
|